Elektro-/Elektrohybridfahrzeuge

zu treffende Maßnahmen

Erkundung

Bei Verdacht auf Elektrofahrzeug:

- Personen (Fahrer) befragen
- Nachsehen ob Rettungskarte vorhanden
- auf Werbeaufkleber achten
- kein Auspuff bei reinen Elektrofahrzeugen
- Versuchen alle Komponenten des Systems zu lokalisieren
 - Akku ist i.d.R. im Heck des Fahrzeugs; unter Kofferraumboden und unter Fahrzeug nachsehen. Dabei auf Warnhinweise ("Gefahr durch Strom") achten. Batteriegehäuse unter keinen Umständen öffnen oder gar entfernen!
 - auf dicke (orange) Kabel im Schweller/unter dem Fahrzeug achten; Vorsicht bei Arbeit mit hydraulischen Rettungsgeräten
 - kein Tankfüllstutzen, dafür Ladesteckdose, ggf. hinter Tankdeckel nachsehen wenn gefahrlos zu öffnen
 - Elektromotoren können auch direkt an den Rädern sein
- Bei Airbagauslösung wird das Hochvoltsystem normalerweise automatisch deaktiviert

Maßnahmen

- Fahrzeug kann sich unvermittelt in Bewegung setzen:
 - System über Trennschalter in Motorraum oder Armaturenbrett deaktivieren
 - Schalthebel auf "P" bzw. Gang einlegen
 - Hand- bzw. Parkbremse anziehen
 - Schlüssel abziehen und mindestens 5 Meter entfernt vom Fahrzeug aufbewahren ("Keyless-Entry"-Systeme)
- Prüfen ob Fahrzeugkarosserie spannungsfrei
- Einsatzkräfte auf besondere Gefahren hinweisen
- vollständige Schutzkleidung tragen

Brandbekämpfung

- Akku kann im Brandfall am besten mit Wasser gelöscht und gekühlt werden, hierbei kann Wasserstoff entstehen (Wasserstoffflamme ist nicht sichtbar, Wärmebildkamera!).
 Löschmittelzusätze führen i.d.R. zu schnellerem Löscherfolg.
- bei nicht sicher deaktiviertem System Strahlrohrabstände einhalten
- Sand/Metallbrandpulver ist eher nicht geeignet

ausgelaufene Batterie

- bei ausgelaufenem Nickel-Metall-Hydrid-Akku leichten CSA und umluftunabhängigen Atemschutz.
- ggf. ausgelaufene Batterieflüssigkeit von Nickel-Metall-Hydrid-Akkus mit Öl- oder Chemikalienbinder aufnehmen. Bei Vermischung mit Löschwasser dieses auffangen. Alternative zu Bindemittel: Neutralisation mit
 - o verdünnter Borsäurelösung (800 g Borsäure auf 20 l Wasser) oder
 - Essig
- ggf. findet sich bei der Batterie auch Kühlmittel die auch auslaufen können

besondere Gefahren

- Spannung in PKW bis zu 300 V, in Bussen bis zu 700 V. Es dauert bis zu 5 Minuten bis sich die Spannung in den Kabeln abgebaut hat.
- Fahrzeug kann geräuschlos, aber trotzdem fahrbereit sein. Der Motor kann bei niedriger Batteriespannung selbsttätig starten.
- ab 100°C können Akkus aufplatzen, dann wird Wasserstoff frei
- toxische Gase im Brandfall

Allgemeine (Vorgehens-)Hinweise

Je nach verwendeter Akku-Technologie ergeben sich verschiedene Eigenschaften:

Lithium-Ionen-Akku

- alle Teile, inklusive der Batterieflüssigkeit, sind brennbar
- Batterie kann bei Kurzschluss Feuer fangen

Nickel-Metall-Hydrid-Akku

- Batterieflüssigkeit ist stark alkalisch, pH-Wert 13,5! Bestandteile sind
 - Kaliumhydroxid (UN-Nr. 1814)
 - Natriumhydroxid (UN-Nr. 1824)

Nach dem Einsatz

- Elektro- und Hybridfahrzeuge können auch Stunden nach dem Unfall noch in Brand geraten. Abschleppunternehmen und Polizei darauf hinweisen!
- Beschädigte Hochvolt-Batterien sind Gefahrgut und sind nur von Berechtigten zu verladen, zu transportieren und zu lagern.

Quellenangabe

- Einsatzhinweise für Elektrofahrzeuge. Landesfeuerwehrschule Baden-Württemberg, Bruchsal 2011.
- vfdb-Merkblatt "Einsätze an Kraftfahrzeugen mit alternativen Antriebsarten und -kraftstoffen", Oktober 2007
- DGUV-Information "Rettungs- und Löscharbeiten an PKW mit alternativer Antriebstechnik

Stichwörter