Seilwinde / Mehrzweckzug

siehe auch Anschlagmittel

zu treffende Maßnahmen

- das 1,5-fache der genutzten Seillänge als Sicherheitsabstand einhalten
- Handschuhe und Helm mit Gesichtsschutz (Visier) tragen

besondere Gefahren

• Wegrutschen der Last

Allgemeine (Vorgehens-)Hinweise

- nicht ruckartig anziehen
- eine Schlagschutzmatte (ersatzweise eine Wolldecke o.ä.) auf das Seil legen um dieses im Falle eines Abrisses nach unten abzulenken (siehe Quellenangabe für weitere Informationen)
- Alle Bestandteile (Seile, Schäkel, Umlenkrollen, etc.) müssen so gewählt sein dass die Zugeinrichtung nicht stärker als die erlaubte Belastung ist
- Bei Drahtseilen darauf achten dass alle verwendeten Seile in gleiche Richtung gedreht gebaut sind. Wird ein rechts- und ein linksgedrehtes Seil zusammen verwendet, drehen sich die beiden Drahtseile unter Last gegenseitig auf!

Mehrzweckzug

- als Zugseil für den Mehrzweckzug nur Spezialseil mit roter Litze verwenden
- zulässige Belastung beachten
- beim Ansprechen der Überlastsicherung (Scherstifte, bei ca. 25% Überlast) kann nur noch entlastet werden. Nur original Scherstifte des Herstellers verwenden.
 - → Selbstverständlich muss danach der Aufbau geändert werden um den Mehrzweckzug danach weniger zu belasten!

maschinelle Zugeinrichtung (Seilwinde)

- Lenkung gerade stellen und Räder mit Unterlegkeilen sichern
- maximale horizontale und vertikale Zugwinkel nicht überschreiten (Angabe des Herstellers)
- nicht zum Heben und Senken von Lasten verwenden
- Auf Wegrutschen des ziehenden Fahrzeugs achten
- Fahrzeug nicht bewegen so lange eine Last angeschlagen ist

Aufbau von Flaschenzügen

Folgende Kräfte können mithilfe von Flaschenzügen mit einem 16-kN-Mehrzweckzug aufgebaut werden. Beachten Sie, dass Seile, Umlenkrollen und Anschlagmittel für die entstehenden Kräfte ausgelegt sein müssen!

Fahrzeugbergung

Mit dieser Berechnung können Sie ermitteln, welche Kraft zur Bergung eines Fahrzeugs aufgewendet werden muss

weraen mass.	
Eigengewicht:	kg
Untergrund:	Straße (Asphalt)GrasKiesMatsch

Steigung (Winkel):	0	Grad
	O F-1-	

O Fahrzeug nicht eingesunken oder keine Achsen blockiert

Fahrzeugzustand: O Fahrzeug bis Mitte Räder eingesunken oder 1 Achse blockiert

O Fahrzeug bis Oberkante Räder eingesunken oder 2 Achsen blockiert

Sicherheitsfaktor: 25 erforderliche Kraft berechnen

Umrechnungstabelle für Steigung von % (auf Straßenschildern) in Grad (für Fahrzeugbergungs-Berechnung)

- a = c.a.g gg,					
Steigung in Grad °	Steigung in %	Steigung in Grad °	Steigung in %		
1	1,8	11	19,4		
2	3,4	12	21,3		
3	5,2	13	23,0		
4	7,0	14	24,9		
5	8,8	15	26,8		
6	10,5	16	28,7		
7	12,3	17	30,6		
8	14,1	18	32,5		
9	15,8	19	34,4		
10	17,6	20	36,4		

mögliche Zugkraft an Bäumen

Diese Werte gelten für Laubbäume mit tiefen Wurzeln!

Durchmesser in cm	mögliche Zugkraft in kN
20	13
30	30
40	53
50	83
60	120

Winkelfunktionen

Geben Sie einen Winkel in der Einheit Grad ein, um die zugehörigen Winkelfunktionen Tangens, Sinus und Cosinus auszurechnen.

Winkel	in	Grad.	
AAIIIVCI	111	Orau.	

Winkelfunktionen ausrechnen (auf 2 Nachkommastellen gerundet)

Erläuterungen zu den Winkelfunktionen Tangens, Sinus und Cosinus finden Sie auf der Seite Mathematische Berechnungen

Weblinks

Quellenangabe

- FwDV 1
- heavy-rescue.de: Arbeiten mit der Winde: Vorlage für Berechnungen, Irakli West
- heavy-rescue.de: Sicherheit bei Seilabriss (Erläuterung der improvisierten Schlagschutzmatte), Irakli West
- B1-Lehrgang 02/2012 am Führungs- und Schulungszentrum der BF Köln
- Grafik Flaschenzüge: selbst zusammengestellte Grafik, basierend auf den beiden Grafiken
 - http://commons.wikimedia.org/wiki/File:Four pulleys FHZaw.svg, veröffentlicht vom Wikipedia-User StromBer unter Attribution-ShareAlike 3.0 Unported-Lizenz

• http://commons.wikimedia.org/wiki/File:Power_pulley.svg, veröffentlicht von den Wikipedia-Usern Prolineserver und Tomia unter Attribution-ShareAlike 3.0 Unported-Lizenz

Stichwörter

Greifzug