Seilwinde / Mehrzweckzug

siehe auch Anschlagmittel

Maßnahmen

- das 1,5-fache der genutzten Seillänge als Sicherheitsabstand absperren
- Bei Dunkelheit den Bereich am Seil ausleuchten
- Handschuhe und Helm mit Gesichtsschutz (Visier) tragen

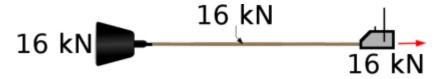
besondere Gefahren

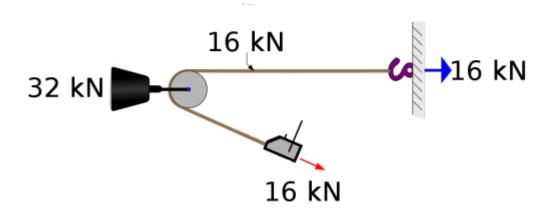
- Wegrutschen der Last
- Quetschgefahr: Nicht ins laufende Seil oder laufende Rollen greifen

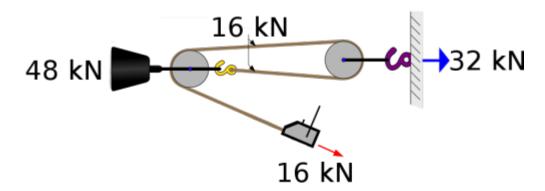
weitere Hinweise

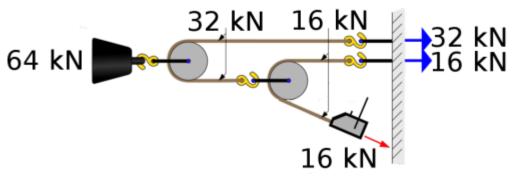
- nicht ruckartig anziehen
- eine Schlagschutzmatte (ersatzweise eine Wolldecke o.ä.) auf das Seil legen um dieses im Falle eines Abrisses nach unten abzulenken (siehe Quellenangabe für weitere Informationen)
- Alle Bestandteile (Seile, Schäkel, Umlenkrollen, etc.) müssen so gewählt sein dass die Zugeinrichtung nicht stärker als die zugelassene Belastung der Bestandteile ist
- Bei Drahtseilen darauf achten dass alle verwendeten Seile in gleiche Richtung gedreht sind.
 Wird ein rechts- und ein linksgedrehtes Seil zusammen verwendet, drehen sich die beiden Drahtseile unter Last gegenseitig auf!
- Nach dem Einsatz alle eingesetzten Materialien auf Beschädigungen prüfen

Mehrzweckzug


- als Zugseil für den Mehrzweckzug nur Spezialseil mit roter Litze verwenden
- zulässige Belastung beachten
- beim Ansprechen der Überlastsicherung (Scherstifte, bei ca. 25% Überlast) kann nur noch entlastet werden. Nur original Scherstifte des Herstellers verwenden.
 - → Selbstverständlich muss danach der Aufbau geändert werden um den Mehrzweckzug danach weniger zu belasten!


maschinelle Zugeinrichtung (Seilwinde)


- Lenkung gerade stellen und Vorderräder mit Unterlegkeilen sichern. Dabei nur verzahnte Keile benutzen, normale LKW-Unterlegkeile können versagen
- maximale horizontale und vertikale Zugwinkel nicht überschreiten (Angabe des Herstellers)
- nicht zum Heben und Senken von Lasten verwenden
- Auf Wegrutschen des ziehenden Fahrzeugs achten
 - Faustregel: Auf fester, trockener Teerstraße hält ein Fahrzeug mit 10 bis 14 Tonnen Eigengewicht eine Zugkraft von ca. 50 kN Zugkraft (auch ohne Unterlegkeile)
 - o ggf. das ziehende Fahrzeug an einem zweiten Fahrzeug, Baum, Erdanker, etc. sichern
- Fahrzeug nicht bewegen solange eine Last angeschlagen ist


Aufbau von Flaschenzügen

Folgende Kräfte können mithilfe von Flaschenzügen mit einem 16-kN-Mehrzweckzug aufgebaut werden. Beachten Sie, dass Seile, Umlenkrollen und Anschlagmittel für die entstehenden Kräfte ausgelegt sein müssen!

Fahrzeugbergung

Mit dieser Berechnung können Sie ermitteln, welche Kraft zur Bergung eines Fahrzeugs aufgewendet werden muss.

Eigengewicht: kg

O Straße (Asphalt)

Untergrund: O Gras

KiesMatsch

Steigung (Winkel): 0 Grad

	1 '1	., .	DDEM	
Einsatz	IPITEN	MIKI -	PI)F-V	ersion

Calludada	/ Malarania aliania
Sellwinge.	/ Mehrzweckzua

O Fahrzeug nicht eingesunken oder keine Achsen blockiert Fahrzeugzustand: O Fahrzeug bis Mitte Räder eingesunken oder 1 Achse blockiert

O Fahrzeug bis Oberkante Räder eingesunken oder 2 Achsen blockiert

Sicherheitsfaktor: 25

erforderliche Kraft berechnen

Umrechnungstabelle für Steigung von % (auf Straßenschildern) in Grad (für Fahrzeugbergungs-Berechnung)

Steigung in Grad °	Steigung in %	Steigung in Grad °	Steigung in %
1	1,8	11	19,4
2	3,4	12	21,3
3	5,2	13	23,0
4	7,0	14	24,9
5	8,8	15	26,8
6	10,5	16	28,7
7	12,3	17	30,6
8	14,1	18	32,5
9	15,8	19	34,4
10	17,6	20	36,4

mögliche Zugkraft an Bäumen

Diese Werte gelten für Laubbäume mit tiefen Wurzeln!

Durchmesser in cm	mögliche Zugkraft in kN	
20	13	
30	30	
40	53	
50	83	
60	120	

Winkelfunktionen

Geben Sie einen Winkel in der Einheit Grad ein, um die zugehörigen Winkelfunktionen Tangens, Sinus und Cosinus auszurechnen.

Winkelfunktionen ausrechnen (auf 2 Nachkommastellen gerundet)

Erläuterungen zu den Winkelfunktionen Tangens, Sinus und Cosinus finden Sie auf der Seite Mathematische Berechnungen

Quellenangabe

- FwDV 1
- heavy-rescue.de: Arbeiten mit der Winde: Vorlage für Berechnungen, Irakli West
- heavy-rescue.de: Sicherheit bei Seilabriss (Erläuterung der improvisierten Schlagschutzmatte), Irakli West
- Tipps für den Seilwinden-Einsatz bei der Feuerwehr von Olaf Preuschoff, Feuerwehr-Magazin, 03.08.2018
- B1-Lehrgang 02/2012 am Führungs- und Schulungszentrum der BF Köln
- Grafik Flaschenzüge: selbst zusammengestellte Grafik, basierend auf den beiden Grafiken
 - http://commons.wikimedia.org/wiki/File:Four pulleys FHZaw.svg, veröffentlicht vom Wikipedia-User StromBer unter Attribution-ShareAlike 3.0 Unported-Lizenz
 - http://commons.wikimedia.org/wiki/File:Power pulley.svg, veröffentlicht von den

Wikipedia-Usern Prolineserver und Tomia unter Attribution-ShareAlike 3.0 Unported-Lizenz

Stichwörter

Greifzug Geräte für Hilfeleistungen, Berechnungen