Photoionisationsdetektoren (PID)

geeignet für den Nachweis flüchtiger organischer Verbindungen (Siedepunkt: ~ 50 °C bis ~ 260 °C)

Anwendungsmöglichkeiten

- Messung der Konzentration einer bekannten Substanz (Reinstoff, mit Responsefaktor)
- Detektion einer Quelle oder einer Leckage
- bei Stoffgemischen: Aussage ob Konzentration zu- oder abnimmt

Grenzen

- bei Gemischen ist es nicht möglich die Konzentration einer Komponente zu bestimmen
- PID besitzt eine hohe Empfindlichkeit gegen Luftfeuchtigkeit

Maßnahmen

- Entscheidung oben/unten messen (Recherche der Luftvergleichszahl in Gefahrstoffdatenbank)
- Gerät vor Betreten des Gefahrenbereichs einschalten
- eV-Angabe der Lampe beachten, in der Regel wird die 10,6 eV Lampe eingesetzt
- Responsefaktor / Correction Factor (RF/CF) der verschiedenen Stoffe beachten und ggf. einstellen (Handbuch des Gerätes beachten!)
 - WICHTIG: PID kann Stoffe nicht identifizieren angezeigt wird das was der Benutzer einstelllt!
- Ist das PID nicht auf den zu messenden Stoff eingestellt, muss eine Umrechnung auf Basis des RF/CF erfolgen um die realen Werte abzuschätzen
- Windverhältnisse beachten
- · Gerät nach jeder Benutzung prüfen

mögliche Messfehler

- Bestimmte Stoffen lassen sich nicht ionisieren!
- Für weitere Stoffe sind besondere eV-Lampen zur Ionisation erforderlich z.B. Methan oder Chlor
- Falsch eingestelleter RF/CF
- Hohe Luftfeuchtigkeit führt ohne Vorfilter zu falschen Ergebnissen!

Stoffbeispiele

Nachweisbar	nicht nachweisbar
Lösungsmittel z.B. Hexan; Pentan; Aceton; Benzol; Toluol	Gase z.B. Methan; Ethan; Acetylen (Ethin)
Kraftstoffe z.B. Benzin; Diesel	typische Brandgase z.B. Kohlenmonoxid (CO); Kohlendioxid (CO2)
Sonstige z.B. Ethen, Ammoniak (NH3)	anorganische Gase z.B. Chlor (Cl2); Salzsäure (HCl); Blausäure (HCN); Wasserstoff (H2)

Quellenangabe

- Gefahrstoffnachweis mit dem Photoionisationsdetektor | ABC-Gefahren Blog (abc-gefahren.de)
- Fortbildungslehrgang Gemeindewehrleiter, Messen im (AB)C-Einsatz Grenzen der vorhandenen Messtechnik

Geräte im Bereich CBRN-Einsätze