Dosisleistungskonstante Allgemeine (Vorgehens-)Hinweise

Gamma-Dosisleistungskonstanten können verwendet werden um die Äquivalentdosisleistung bei bekannter Aktivität des Strahlers in einer bestimmten Entfernung zu berechnen. Das Formelzeichen ist Γ_H .

Mit folgender Formel kann die Äquivalentdosisleistung in μ Sv/h berechnet werden: $\boxed{\mathbf{x}}$

- A: Aktivität in Gigabecquerel (Umrechnung)
- r: Abstand von der Strahlenquelle in Metern

Für die Berechnung wird vorausgesetzt, dass es sich zumindest annähernd um einen Punktstrahler handelt. Es ist zu beachten, dass durch die Gamma-Dosisleistungskonstanten nur die Anteile der Gamma-Strahlung abgedeckt werden, eventuelle weitere auftretende Strahlungsarten werden nicht berücksichtigt. Bei der zusätzlichen Emission von Beta-Strahlung kann diese bei geringer Entfernung zur Strahlungsquelle bis zu 200-fach höher sein als die Gamma-Strahlung.

Gamma-Dosisleistungskonstanten wichtiger Nuklide

Radionuklid	HWZ	Gamma-Dosisleistungskonstante Einheit: (μSv·m²)/(h·GBq)
Be-7	53,29 d	7,768
Na-22	2,603 a	322,1
Na-24	14,96 h	491,2
Mg-28	20,90 h	206,3
Ar-41	1,83 h	178,1
Kr-42	12,36 h	36,86
Sc-46	83,82 d	292,9
Ca-47	4,54 d	148,7
V-48	15,97 d	420,6
Cr-51	27,7 d	4,79
Fe-52	8,27 h	467,9
Mn-52	5,60 d	497,3
Mn-54	312,20 d	125,4
Mn-56	2,58 h	231,3
Co-56	77,26 d	482,8
Co-57	271,79 d	15,21
Co-58	70,86	148
Fe-59	44,503 d	168
Co-60	5,272 a	351,1
Cu-64	12,70 h	29,42
Ni-65	2,52 h	75,18
Zn-65	244,30 d	83,21
Ga-66	9,40 h	311,8
Ga-67	78,30 h	20,81
Ga-68	67,63 min	147,7
Ge-68	270,82 d	147,7
Ga-72	14,10 h	360,2
As-74	17,77 d	117,5

Radionuklid	HWZ	Gamma-Dosisleistungskonstante Einheit: (μSv·m²)/(h·GBq)
Se-75	119,64 d	55,46
As-76	26,40 h	63,4
Rb-81	4,58 h	92,2
Kr-81 m	13,10 s	17,86
Br-82	35,34 h	393
Kr-85	10,76 a	0,354
Sr-85	64,89 d	78,94
Rb-86	18,70 d	13,71
Sr-87 m	2,81 h	49,37
Y-88	106,60 d	357,6
Y-91	58,50 d	509
Zr-95	64,00 d	111,8
Nb-95	34,97 d	116,1
Mo-99	66,00 h	39,2
Tc-99 m	6,00 h	16,16
Ru-103	39,35 d	77,42
Rh-105	35,40 h	11,74
Pd-109	13,43 h	15,39
Cd-109	462,60 d	43,47
Ag-110 m	249,90 d	408,4
Ag-111	7,45 d	4
In-111	2,81 d	86,36
In-113 m	99,49 min	47,91
In-114 m	49,50 d	26,3
Sn-113	115,10 d	74,27
Cd-115 m	44,80 d	4,58
Sb-122	2,70 d	68,77
I-123	13,20 h	43,18
Sb-124	60,30 d	260
Sb-125	2,77 a	77,72
J-125	59,41 d	38,8
J-131	8,02 d	59,34
Ba-131	11,50 d	85,1
Te-132	3,024 d	391,2
I-132	2,30 h	344
Xe-133	5,20 d	13,88
Ba-133	10,50 a	80,23
Cs-134	2,06 a	237,2
Cs-137	30,17 a	87,98
Ce-139	137,60 d	32,94
Ba-140	12,75 d	395,6
La-140	40,272 h	316,8
Ce-141	32,50 d	11,98
Ce-144	284,80 d	7,34

Radionuklid	HWZ	Gamma-Dosisleistungskonstante
		Einheit: (μSv·m²)/(h·GBq)
Nd-147	10,98 d	24,38
Eu-152	13,33 a	172,9
Gd-153	239,47 d	23,25
Eu-154	8,80 a	178,1
Eu-155	4,761 a	9,25
Yb-169	32,00 d	49,39
Tm-170	128,60 d	0,7886
Yb-175	4,20 d	6,027
Hf-175	70,00 d	56,37
Lu-177	6,71 d	7,483
Hf-181	42,39 d	84,47
Ta-182	114,43 d	185
Re-186	89,25 h	2,64
W-187	23,72 h	72,84
Os-191	15,40 d	12,94
Ir-192	73,83 d	124,9
Au-195 m	30,50 s	29,12
Hg-195 m	40,00 h	40,91
Pt-197	18,30 h	2,72
Hg-197	64,10 h	8,701
Au-198	2,6943 d	62,7
Au-199	3,139 d	11,81
TI-201	73,10 h	11,86
Hg-203	46,59 d	35,13
Pb-210	22,30 d	0,47
Ra-224	3,66 d	1,42
Ra-226	1600 a	225
Ac-227	21,773 a	58,9
Ra-228	5,75 a	308
Th-228	1,913 a	0,22
Th-232	1,405×10 ¹⁰ a	298,4
U-234	2,455×10⁵ a	0,02
Am-241	432,2 a	6,594

Nuklide, denen ein **m** (für *metastabil*) nachgestellt ist, befinden sich nicht im Grundzustand sondern sind Kernisomere.

Viele weitere Informationen zu Nukliden sind auf der Seite Nuklidkarte zu finden.

Quellenangabe

- Lehrunterlage "Grundkurs im Strahlenschutz", Studiengang Security & Safety Engineering (Bachelor), Hochschule Furtwangen
- @ Eintrag für Dosisleistungskonstante bei Wikipedia
- S Eintrag für Kernisomer bei Wikipedia

Stichwörter