Volumen- und Volumenstromabschätzung

weitere Hinweise

Volumenstromabschätzung

Tropfleckage

ca. 1 Liter/Minute

nach vfdb-Richtlinie 10/05-3

Flanschleckage

Undichtigkeit aufgrund versagender Dichtung oder Verschraubung:

Nennweite in mm	Leckagemenge Liter/Minute
DN 25	25
DN 50	50
DN 100	100

nach vfdb-Richtlinie 10/05-3

Rohr- und Behälterleckage

Abriss einer Rohrleitung oder Loch in einem Behälter:

Nennweite in mm	Abschätzung	Leckagemenge Liter/Minute
DN 25	Fingerdick	125
DN 50		500
DN 80	Armdick	1300
DN 100	Armdick/Faustdick	2000
DN 125	Faustdick	3125
DN 150		4500

nach vfdb-Richtlinie 10/05-3

Risse in Rohrleitungen

Durchmesser	anzunehmende Austrittsfläche
bis DN 100	0,01 x (DN) ²
über DN 100	100 mm²

nach Ermittlung und Berechnung von Störfallablaufszenarien, Bundesumweltamt

Größenordnungen von Behältern

Behälter	geschätztes Volumen in Litern
Kleingebinde, handelsüblich	1 - 10
Druckgasbehälter	1 - 120.000
- Druckgasflaschen	bis 50
- Druckgastransportbehälter	bis 500
- Druckgastankwagen - Behälter oder Flaschenbündel	bis 30.000
- Druckgaskesselwagen	bis 120.000
Fässer	10 - 200
Großpackmittel (z.B. IBC, Bigbag (FIBC),)	100 - 4.000
ISO-Tank (Transport Straße/Schiene/Schiff)	15.000 - 30.000
Kammer eines Tankwagens (Straße)	3.000 - 30.000
Kesselwagen (Eisenbahn)	10.000 - 120.000
Binnenschiff	30.000 - 1.000.000

Behälter	geschätztes Volumen in Litern
Tanklager	100.000 - 10.000.000

nach vfdb-Richtlinie 10/05-3. Das Volumen von Eisenbahn-Kesselwagen wurde von 80.000 auf 120.000 Liter geändert, da die DB in Ihren Unterlagen für Einsatzkräfte diese Maximalmenge angibt.

technische Daten von Druckgasbehältern (Gasflaschen)

Siehe die Seite Gasflaschenkennzeichnung für Schulterfarben von Gasflaschen.

Fa. Air Liquide (Auszug aus Tabellen)

Einsatzbereiche der Flaschentypen und -größen

für Luftgase, Wasserstoff,	10, 20, 33 oder 50 Liter Rauminhalt mit einem Druck von 200 oder
Methan und andere	300 bar
für Kohlendioxid	Füllmenge 6, 10, 20, 25 oder 30 kg
für Acetylen	10, 20, 40, 50 Liter Rauminhalt (die gelöste Menge an Acetylen ist abhängig von der porösen Masse und dem Lösungsmittel)
für Propan	Füllmenge 5, 11, 33 kg

Aluminiumflaschen

Rauminhalt / Flaschengröße	11	2 I	10 I	40 I
Fülldruck (bar)	200	200	200	200
Gasinhalt expandiert ca. in m³ (15 °C, 1 bar)	0,2	0,4	2	8

Druckgasbehälter für verflüssigte Gase (z.B. Propan / Butan)

Rauminhalt / Flaschengröße	12,35 I	13,4 I	27,2 I	79 I
Gasinhalt expandiert ca. in kg	5	10	11	33

Edelstahlflaschen

Rauminhalt / Flaschengröße	10 I	10 I	40 I	47 I	50 I
Fülldruck (bar)	40	200	200	40	40
Gasinhalt expandiert ca. in m³ (15 °C, 1 bar)	0,4	2	8	1,9	2

Stahlflaschen

Rauminhalt / Flaschengröße	0,385 I	11	2 I	10 I	10 I	10 I	20 I	20 I	33 I	50 I	50 I
Fülldruck (bar)	200	200	200	150	200	300	200	300	300	200	300
Gasinhalt expandiert ca. in m³ (15 °C, 1 bar)	0,08	0,2	0,4	1,5	2	3	4	6	10	10	15

Stahlflaschen für unter Druck gelöste Gase (Acetylen)

Rauminhalt / Flaschengröße	10 I	20 I	40 I	50 I
Fülldruck (bar)	18,5	18,5	18,5	18,5
Gasinhalt expandiert ca. in m³ (15 °C, 1 bar)	1,6	4	6,3	10

Quellenangabe

- vfdb-Richtlinie 10/05: Gefahrstoffnachweis im Feuerwehreinsatz, Teil 3: Qualifikation des Personals, Auswertung und Personenschutz
- Ermittlung und Berechnung von Störfallablaufszenarien nach Maßgabe der 3. Störfallverwaltungsvorschrift, Umweltbundesamt
- http://www.airliquide.de/loesungen/produkte/gase/lieferformen/cylinder-versorgung.html
- Leitfaden Hilfeleistungseinsätze der DB AG

CBRN-Einsätze allgemein